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Stability of charge inversion, Thomson problem, and application to electrophoresis

Michael Patra, Marco Patriarca, and Mikko Karttunen
Biophysics and Statistical Mechanics Group, Laboratory for Computational Engineering, Helsinki University of Technology,

P.O. Box 9203, FIN-02015 HUT, Finland
~Received 5 November 2002; published 20 March 2003!

We analyze charge inversion in colloidal systems at zero temperature using stability concepts, and connect
this to the classical Thomson problem of arranging electrons on sphere. We show that for a finite microion
charge, the globally stable, lowest-energy state of the complex formed by the colloid and the oppositely
charged microions is always overcharged. This effect disappears in the continuous limit. Additionally, a layer
of at least twice as many microions as required for charge neutrality is always locally stable. In an applied
external electric field the stability of the microion cloud is reduced. Finally, this approach is applied to a system
of two colloids at low but finite temperature.
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I. INTRODUCTION

We study analytically and numerically charged colloid
particles in the presence of electrolyte solutions in the lo
temperature limit. This is equivalent to strong electrosta
coupling at finite temperature@1#. Already at room tempera
ture a colloidal system thus is in the low-temperature regim
provided the electrolyte consists of multivalent ions. In th
limit, a certain number of ions condenses onto the surfac
the colloid. For consistency, we will call the charged colloi
macroions, and the ions of the electrolyte microions. For
general macroion problems, this behavior has recently
tracted a lot of attention especially due to its importance
biological systems@2–9#.

Macroion complexes exhibit numerous counterintuiti
phenomena. The most pronounced one is referred to as o
charging or charge inversion. A certain number of microio
is needed to condense for the entire complex~macroion and
condensed microions! to become charge neutral. Sometim
an excessive number of microions condenses@5,6,8,10–22#
and the complex, the ‘‘dressed’’ macroion, acquires an eff
tive charge that is opposite in sign to that of the bare m
roion. This phenomenon is beyond the standard Deb
Hückel @23–25# and Derjaguin-Landau-Verwey-Overbee
~DLVO! theories@26#.

Another phenomenon is autoionization@17,18,20#. This
means that one macroion transfers some of its microion
another macroion, so that the first one becomes undercha
while at the same time the second one becomes overcha
Also analyzed in the literature is the important question
transport in an external electric field. A bare macroion w
move in the direction determined by its own charge. T
binding of microions to it can under certain conditions r
verse the direction.

These results have mostly been arrived at by molec
dynamics and Monte Carlo simulations. Simulations of
the advantage that finite temperature can be taken into
count in a natural way. Purely analytical approaches hav
resort to relatively complicated starting points since me
field theories are insufficient@23–25#. A successful and often
used approach is the model of a two-dimensional Wig
crystal which becomes exact at zero temperature and
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large number of microions per macroion@27#.
At zero temperature—without any restrictions on t

number of microions—the problem is, however, directly r
lated to the classical ‘‘Thomson problem’’ of finding stab
configurations ofN mutually repelling electrons on the su
face of a sphere@28,29#. While the original problem was
about the plum pudding model for the atom, whereN par-
ticles are confined inside a homogeneously charged sph
both problems actually are identical since the repelling int
action will push all particles inside the sphere toward
surface. This was recently shown by energy minimizat
arguments by Brito and Fiolhais@30#. This similarity be-
tween overcharging and the Thomson problem seems to h
been largely unnoticed in the macroion literature.

In this paper we will make use of the Thomson problem
derive rigorous bounds for the phenomena discussed ab
At zero temperature, our results are exact, and hence an
provement on previously known results from the Wign
crystal theory. Compared to the results of simulations,
derivation suffers from our inability to include finite tem
perature in an exact way. However, our method outperfo
previous ones in both the ease of the method~both concep-
tually and numerically! and in allowing to treat many phe
nomena in a single consistent way.

This paper is organized as follows. In Sec. II we summ
rize the so-called primitive model. This model is used
basically all studies of macroion complexes. In Secs. III–
we analyze the stability of overcharged macroion complex
We use concepts from dynamical-systems theory to sh
that two different stability properties exist, global stabili
~Sec. III! and local stability~Sec. IV!. In Sec. VI we move on
to the question of a macroion in an applied external field, i
electrophoresis. We will discuss the autoionization of mac
ions in Sec. VII. We conclude in Sec. VIII.

II. MODEL

We consider a spherical macroion of chargeQ and radius
Rmac, surrounded byN spherical microions of chargeq and
radiusRmic . Q and q are of opposite signs, and in the fo
lowing we assumeQ,0. The macroion is fixed at the origin
and the N microions are distributed at positionsrW i , i
©2003 The American Physical Society02-1
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51, . . . ,N. The total electrostatic energyV for a particular
configuration is then given by

V~$rW i%!5
q2

4pe (
i , j

1 . . .N
1

urW i2rW j u
1

qQ

4pe (
i 51

N
1

urW i u
, ~1!

where the first sum accounts for the mutual repulsion of
microions, and the second for the attraction between
macroion and each microion. The effect of solvent is
cluded through an effective dielectric constante. Short-range
pairwise repulsion is taken into account by hard-core in
action

Vhc5(
i 51

N

v~ urW i u2Rmac2Rmic!1 (
i , j

1 . . .N

v~ urW i2rW j u22Rmic!,

~2!

wherev(r )→` for r ,0 and zero otherwise. Equations~1!
and ~2! comprise the so-called primitive model@8#.

III. GLOBAL STABILITY

We approach the problem by using the well-known Ea
shaw’s theorem@31# which states that there can be no sta
state in a system with only electrostatic interactions pres
For stable configurations to exist, short-range repuls
forces must be present in addition to the long-range Coulo
ones. For our system, the short-range forces are due to h
core interaction@Eq. ~2!#. Earnshaw’s theorem thus restric
stable configurations to have all microions at a distanceR
[Rmac1Rmic away from the center of the macroion.

The conditionurW i u5R allows us to simplify Eq.~1! to

V~$rW i%!5
q2

4peR (
i , j

1

urW° i2rW° j u
1

qQN

4peR
, ~3!

with the normalized coordinatesrW° i[(1/R)r i . Equation~3!
no longer describes the energy of an arbitrary arrangem

$rW i% of particles but the energy ofany stablearrangement
instead. Next, we introduce the functionf (N),

f ~N!5 (
i , j

1 . . .N
1

urW° i2rW° j u
with urW° i u51, ~4!

where we demand that the coordinates$rW° i% are those for the
lowest-energy state withN microions around the macroion
Thus, the coordinates are completely defined byN.

At the ground state, Eq.~4! becomes minimized. The
complete solution can be computed numerically very e
ciently @32#. Furthermore, the functional form off (N) is
known to excellent precision@29# to be

f ~N!5
N2

2
2cN3/2 with c50.5510. ~5!

This formula is easy to understand when one notices tha
first term is the energy of a continuous layer of charge o
sphere of unit radius while the second term is the self-ene
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correction due to discrete microions which can be shown
be proportional toN3/2. A comparison of Eq.~5! and a nu-
merical solution of the exact formula@Eq. ~4!# is shown in
Fig. 1.

By using the conditionurW i u5R for all i we have com-
pletely accounted for the hard-core interaction between
macroion and the microions. We can neglect the hard-c
interaction between microions since they repel each othe
their charges have the same sign. Collecting results, the
tential energy of the lowest-energy state for a macroion s
rounded byN microions is given by

V~N!5
q2

4peR FN2

2
2cN3/2G1

qQN

4peR
. ~6!

Earnshaw’s theorem gives a necessary but not suffic
criterion for the stability of a system. Furthermore, it sta
that an unstable microion is immediately pushed to infin
Let us consider a macroion andN microions where we place
the microions at arbitrary positions—not necessarily on
macroion. Due to Earnshaw’s theorem,M of them will attach
to the macroion whilek5N2M will escape to infinity. AllN
will go to the macroion if it is the state lowest in energy, i.e
if

V~N!,V~M ! ; 0<M,N. ~7!

This condition is much stronger than the simple conditi
V(N),0, since the latter only preventsall microions from
escaping simultaneously while Eq.~7! also preventssome
from escaping.

Due to Earnshaw’s theorem, all stable solutions are e
merated by the number of microions, and we simply have
find the number yielding the lowest energy. Since Eq.~6!
possesses only a single extremum for given parametersq, Q,
andR, we can simply usedV(N)/dN50. That yields

Nglob5
uQu
q

1
9

8
c21

9c2

8
A11

16

9c2

uQu
q

, ~8!

where we have used the assumptionQ,0 introduced above.
The first termuQu/q gives the naive result that a comple

consisting of macroion and layer of microions should
charge neutral. The other two terms give the excess bo

FIG. 1. Comparison of Eq.~5! ~solid line! with the result of a
numerical computation of Eq.~4! ~open circles!.
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microions. The maximum stable overcharging in terms
charge isQglob5qNglob2uQu, see Fig. 2.

The stability criterion that we derived applies to an ar
trary initial placement of microions. For this reason, this ki
of stability is referred to asglobal stability, see any textbook
on nonlinear dynamics, e.g., Ref.@33#.

IV. LOCAL STABILITY

In addition to global stability, there exists the concept
local stability. While global stability states that the microion
will move to the macroion independent of their initial pos
tions, local stability means that they will stay at the macro
if they have initially been placed there. The system is loca
stable~but not globally! if the system could lower its energ
by transferring one~or more! microions from the macroion
to infinity but in doing so would need to cross an ener
barrier. Since we are restricting ourselves to classical phy
at zero temperature, it is impossible to cross such a ba
and the microions would stay touching the macroi
forever—if prepared with this initial condition.

To calculate the condition for the existence of such a b
rier we move particlek slightly away from the macroion by
a distanceD, keeping all other microions on the surface
the macroion. If this move increases the potential ene
resulting in a restoring force, the system is locally stable

We label all quantities in the perturbed state by a prim
hencer k85R1D andr l85r l5R; lÞk, and we introduce the

abbreviationdkl5urWk2rW l u. Since we need to consider on
small D, we can use a series expansion, with the result

1

dkl8
5

1

dkl
2

1

2Rdkl
D and

1

urWk8u
5

1

R
2

1

R2
D. ~9!

Inserting this into Eq.~1! gives

V85V2
q

4peR Fq (
iÞk

1 . . .N
1

2dki
1

Q

RGD[V2
hk

R
D. ~10!

The system is locally stable if and only if the expression
brackets is negative for allk since then an increase inD will
increase the potential energy. Thus, the condition for lo
stability ishk,0;k. Since the lowest-energy arrangement

FIG. 2. Globally stable overchargingQglob as a function of the
ratio of the charges of macroion and microion, computed from
~8!.
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the particles rarely is completely symmetric, this yields t
necessary but not sufficient condition^hk&k,0, where this
average is over all possible particlesk. Noting that (khk
5V(N), this gives the necessary condition for local stabil

V~N!,0. ~11!

It should be noted that this simple form for the condition is
coincidence, and for other systemsV(N),0 has not neces
sarily a relation to local stability. With the help of Eq.~6! this
condition can be converted into an upper bound for the nu
ber of microions that can be bound locally stable,

Nloc52
uQu
q

12c2F11A11
2uQu

c2q
G . ~12!

In terms of charge this isQloc5qNloc2uQu.
To check the difference between Eq.~12! and the exact

solution, we have numerically computed the lowest-ene
state as a function ofN, and from that determined the large
hk for eachN. The result in Fig. 3 shows that hardly an
difference between the two values can be seen. This does
come as a surprise since the differences betweenhk for dif-
ferent k are small as the repelling forces among the mic
ions try to make all mutual distances as equal as possib

V. SUMMARY OF STABILITY CONCEPTS

For finite q, the number of microions that are bound gl
bally stable is always larger than the valueN5uQu/q, i.e.,
the macroion is overcharged. In the continuous limitq→0
this effect disappears. In contrast, the number of loca
stable bound microions is at least twice the amount nee
for charge neutrality, and this effect persists even in the c
tinuous limit. Figure 4 shows the different regimes as a fu
tion of the charges of macroion and microions.

We now want to put our results into perspective of pre
ous results on overcharging@5,6,8,10–22#. At finite T, there
are only few simulations done in the geometry employed
this paper, e.g., Ref.@22#. Most analytical work focuses on
T50, both due to simplicity and allowing one to focus o
the influence of correlations. We employ the same approa

The main advantage of our approach is the adoption of

.
FIG. 3. Number of locally stable microions as a function of t

ratio of the charges. The solid line is the analytic upper bound
Eq. ~12!, while the dashed line is a numerical solution of the ex
formula, Eq.~10!.
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PATRA, PATRIARCA, AND KARTTUNEN PHYSICAL REVIEW E67, 031402 ~2003!
exact Thomson model as source for the potential ene
V(N), whereas previous papers used an energy estimat
V(N) derived from strongly correlated liquid and the Wign
crystal theory@5,17#. The Wigner crystal theory contains
parametera whose value can either be determined fro
simulations as a function ofN—which trivially leads to a
self-consistent result—or needs to be fixed with the anal
cal value fora known for a two-dimensional Wigner crysta
In the latter case, this results in an error of up to order 1
for the computed energies@17#. In contrast the error of Eq
~5! is negligible~less than 1024).

We apply methods from nonlinear dynamics, using
concepts of local and global stability. The existence of th
two different stability properties seems to be unnoticed
macroion literature. For example, the criterion by Mess
et al. agrees with our global stability criterion up to the d
ferences caused by their choice forV(N). The concept of
local stability, however, is also an important one as can
seen, for example, in the electrophoresis setup treated in
following section.

Finally, for numerical calculations we employ a minim
zation scheme. Only a few different initial conditions a
necessary to make sure that the algorithm does not bec
stuck in a local minimum. This is in contrast to MD simul
tions which suffer from the slowing down of the dynamics
low temperature.

VI. MACROION IN AN EXTERNAL ELECTRIC FIELD

Let us consider a macroion withN microions in an exter-
nal fieldEW. We will restrict ourselves to the case of homog
neous external field so that the dipole and higher moment
the macroion complex are irrelevant. Typical electrophore
experiments are done in the presence of a homogen
field.

The total force acting on the complex becomes simply

FW 5~qN1Q!EW. ~13!

The complex will thus move in the same direction as the b
macroion if the macroion is undercharged, it will move in t
opposite direction if it is overcharged, and it will remain
rest if it is charge neutral.

FIG. 4. Number of microions that can be bound globally sta
or locally stable to a macroion.Nq/uQu51 is the number of micro-
ions expected from charge neutrality.
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Having a macroion complex with givenN, q, andQ, the
interesting question is not in which direction the effecti
force acts@since that question is trivially answered by E
~13!# but rather whether the forces become so large that
system disintegrates.~For a system with only gravity, this
problem is referred to as stability under tidal forces.! This
was noted earlier when the dependence of the mobility of
macroion complex on an applied field was analyzed@14,34#.
While it was shown for a few examples that some microio
are ‘‘ripped off’’ the macroion, no systematic study of th
stability criterion under an applied external field has be
done ~to the author’s knowledge!. Here, we aim to fill this
gap.

With an applied external fieldEW, Eq. ~1! has to be ex-
tended to

V5
q

4peRFq (
i , j

1 . . .N
1

urW i°2rW j°u
2qEW •(

i 51

N

rW i°1QNG ,

~14!

with the reduced electric field

EW 5
4peR2

q
EW. ~15!

The concept ofglobally stability introduced in Sec. III
cannot be applied in the presence of an external field s
the potential energy is not bounded from below@35#, and
local stability of the complex is the relevant concept. Aga
we move particlek by a distanceD!R away from the mac-
roion. To first order, the potential energyV8 of the new state
then becomes

V85V2
q

4peR2 Fq (
iÞk

1 . . .N
1

2urW i°2rWk°u
1Q1qEW •rWk°GD

~16a!

[V2
1

R
hkD. ~16b!

The third term in the brackets of Eq.~16a! is the difference
to Eq.~10!. It describes the interaction with the external fie
and depends on the angle between the position of the par
and the external field.

As in Sec. IV the macroion complex is locally stable
and only if hk,0 for all k. A closer inspection of Eq.~16a!
and comparison to Eq.~14! shows that the big bracket n
longer is directly related to the energy of thekth particle~as
it was in Sec. IV! as the sign in front ofEW •rWk° is inverted
@36#.

We have been unable to find analytical expressions for
critical external field at which the macroion complex b
comes unstable and had to resort to a numerical solutio
Eq. ~16!. The numerical procedure, however, is basica
identical to the one without an applied external field, hen
numerically very inexpensive. The result is depicted in F
5. The roughness of the curves is not a sign of a numer
problem but rather due to the physics of the problem. D

e

2-4
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electrostatic coupling is strong enough~i.e., largeuQ1u, uQ2u
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pending on the precise value forN, the geometrical arrange
ment is more or less symmetrical, resulting in large chan
in the dipole moment whenN is changed by only 1. Withou
an external field, this dipole moment is not relevant, and
quantities are smooth functions ofN. This is no longer the
case now.

In Sec. IV we have shown that it is always possible
bind at least 2uQu/q microions in a locally stable manne
Thus, for N<2uQu/q a finite electric field is necessary t
break up the complex. For largerN, however, the critical
field may vanish, explaining the division of the diagram in
two separate regions by the lineN52uQu/q.

VII. CHARGE DISTRIBUTION BETWEEN TWO
MACROIONS

Next, we apply our approach to the case of two we
separated macroions, with chargesQ1 andQ2, and radiiR1
and R2, respectively, together withM[uQ11Q2u/q micro-
ions so as to achieve charge neutrality. According to Fig
and Eq.~12!, there are many different possibilities for di
tributing thoseM particles among the two macroions in
locally stable way. The naive result is the one where e
dressed macroion becomes charge neutral. However,
possible thatd microions will be transferred from the firs
macroion to the second~if d,0, udu ions are transferred in
the opposite direction!. Such a state is called ‘‘ionized
@17,18,20#. Neglecting interactions among the two macr
ions, since they are well separated, and applying Eq.~6!
gives the potential energyV(d),

FIG. 5. ~Reduced! electric fieldE above which a state withN
microions bound to the macroion is destroyed.~All labels ‘‘ uQu ’’
inside the figure are to be understood asuQu/q.!
03140
s
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3

h
is

-

V~d!5
q2

4pe F 1

R1
f ~ uQ1u/q1d!1

1

R2
f ~ uQ2u/q2d!G

1
q

4pe F ~ uQ1u/q1d!
Q1

R1
1~ uQ2u/q2d!

Q2

R2
G .

~17!

We assume that the ions are at very low but finite te
perature such that the system can break out of a locally st
state, and to find its lowest-energy state@37#. This state is
easily computed from Eq.~17! and provides a relation be
tweenQ1 , Q2, andd for the ground state. This result is mo
easily displayed whenQ2 is expressed in terms of the othe
parameters,

uQ2u5d1~d1uQ1u!
R2

2

R1
2

1
4d2

9c2 S 11
R2

R1
D 2

24
dAuQ1u1d

c
R2

R11R2

R1
2

. ~18!

This curve is depicted in Fig. 6 for different ratios ofR1 and
R2. For two identical macroions we find that the lowes
energy state is the nonionized one, whereas forQ1ÞQ2 but
R15R2 the macroion with higher charge attracts more m
croions than naively expected. This is in agreement with e
lier results for R15R2 where the correlation effects in
three-dimensional layer were approximated by the effect
a two-dimensional Wigner crystal and confirmed by nume
cal simulations@17,18,20#. For R1ÞR2 the macroions are
uncharged only if

Q1

R1
2

5
Q2

R2
2

. ~19!

Other configurations than the lowest-energy state can be
cited thermally, and, due to local stability, can persist
relatively long times.

In a strict mathematical sense, at finite temperature mic
ions cannot be bound to a three-dimensional structure lik
sphere. This is in contrast to a rod or a planar geometry@7#.
If the temperature is not too high, or equivalently, if th
-

FIG. 6. Overcharging (.0) or undercharging (,0) of the first macroion~in units of q) as a function of the chargesQ1 andQ2 of the

two macroions. The radii of the two macroions areR15R2 ~left!, R151.5R2 ~center!, andR152R2 ~right!. The lines are for the lowest
energy configuration.
2-5
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PATRA, PATRIARCA, AND KARTTUNEN PHYSICAL REVIEW E67, 031402 ~2003!
and q as well as smallR), the methods presented in th
paper can still be applied in an approximate fashion. Mic
ions stay very close to one macroion for most of the tim
before they hop~i.e., move within a time that is short com
pared to the time that they remain effectively bound! to the
other macroion. If we neglect the short hopping phases,
probability for a given ionization leveld is then given by the
Boltzmann factor,P(D)}exp@2bV(d)#, and is easily evalu-
ated numerically for arbitrary parameters.

VIII. CONCLUSIONS

To conclude, using general stability concepts we ha
shown that for a charged macroion a stable overcharged
persists at zero temperature. The number of globally sta
microions is given by Eq.~8!, the number of locally stable
microions is given by Eq.~12!. Physically, global stability
means that a random arrangement of microions will move
form a layer around the macroion, whereas local stabi
means that a layer that exists due to initial conditions w
persist forever. An applied external field, as used in elec
phoresis, decreases the stability of the microion cloud,
demonstrated in Fig. 5. We have also applied this appro
to a system of two macroions. In its ground state each of
two macroions acquires a nonvanishing net charge, see
~18!, unless Eq.~19! is fulfilled.

At finite temperature, the concept of analyzing the ene
cs

an

d.

.

.

.
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as a function of the number of bound microions can still
used to compute the number of globally and locally, resp
tively, stable microions—provided that the potential ener
is replaced by the free energy. The microion free energy
difficult to compute in a precision comparable to that of t
potential energy, however, and this is why we refrain fro
presenting formulas for the finite-temperature case.

In a simple approximation@9#, the contribution of each
bound microion to the free energy is given by the differen
in chemical potential of an ideal gas at the higher density
the bound microions and the lower density of the microio
in the bulk solvent. No microions can be bound at fin
temperature in the infinite dilution limit. Further complica
tions ~e.g., the formation of double layers! can arise if the
solvent contains two different species of microions. The
effects are outside the scope of this paper.

The value of our approach lies in the fact that it is exa
and by that clarifies the effects caused by finite size, fin
charge, correlations, and electrostatic interactions.
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@36# This sign is easily understood by noting that the energies
to macroion-microion interaction as well as due to microio
microion interaction become smaller in magnitude when
kth microion is moved away but the energy due to the exter
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field becomes larger in magnitude.
@37# Note that this state is not globally stable even though it is

state of lowest energy. In contrast to Sec. III, where no ene
barriers existed, they do now.
2-7


